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METHOD OF DIMENSIONLESS COEFFICIENTS FOR ANALYSIS
OF STRUCTURALLY ORTHOTROPIC PLANE STRUCTURES

PART 2

RICHARD BARES

In Part 1 we have indicated the procedure of analytic investigation for structurally
orthotropic plane systems. We have based the analysis on dimensionless parameters
K and K°, for which we gave the definitions as well as their numerical values. These
parameters are convenient in determining the deflection w(x, y) due to a line-load
P(x)» harmonic along the X-direction, as well as the deflection due to the load p?,),
harmonic along X while uniformly distributed across the width of the system (i.e.
in the Y-direction).

Now we shall indicate the procedure for deriving further dimensionless parameters,
which will be found suitable in defining and calculating all the stress components
(internal forces and moments), at anyone section of the structure.

5. BENDING MOMENTS IN MAIN BEAMS (IN THE X-DIRECTION)

For bending in the X-direction, the moments are given by the second derivative
of the deflection w(x, y) as given by Eq. (45), with regard to the relation (9); consider-
ing the particular case of a line load harmonic in the X-direction, we can write the
formula for the bending moments, in main beams as follows

(69 My = 2 L2 (K + n o)} sin ™,

where K(y),, is given by Eq. (46), while u(y), is 2 newly introduced dimensionless
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parameter. Depending on ¢, ¥, 3, o and #, it is given by the following expression

(69 H0)a= = i Mo + Bao) + (L= &) (= A +

+ BmMr,om) + e(cr’norpm + Er’lrprpm) + \/(1 - 82) (CI’IIP'PM - B"'IOW'I) +

' \/(i t Z) Pro-wim = Ol‘P—'Pl"'] . )

1y For n = 0 this parameter is the (29%m?z)-multiple of the original Massonnet parameter [113;
hence HOIpln=0 = 28m?n uOIMASS
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The values of this second dimensionless parameter are shown in the figures 27 to 44,
where they are plotted against the values of § fora = 0, = 1,and gy = 0and =
= 0-25, for various values of ¢ and .

In a similar manner, but for uniformly distributed load in the Y-direction (while
harmonic in the X-direction) we find the bending moments in the main beams to be

My . mux
(66) M = Z:2m2 [1 + K°(»)m — 1 1°()m] sin -

where K°(y),, is given by Eq. (58), and the dimensionless parameter -u°(y),,, is given
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by the forﬁlula'
6) RO = 1AM — BIN,) = (1 — &) (AN,

BO'M ) + e( Ao’oym + BSIIPyM) - J(l - 82) (AY(')l,Pym + Bgllo)'m)} *
The variation of u = p°y), is illustrated in the figures 45— 46‘ where the values

of u are plotted vers the independent variable .9 for @ = 0, @ = 1 (while = 0-25),
and for various values of ¢.
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For any other, arbitrary type of load, the pertinent formulae can be obtained by
superposition of the individual effects, for instance as shown in [4]. - .

6. TRANSVERSE BENDING MOMENTS (IN THE Y-DIRECTION)

For bending in the Y-direction, the moments are defined by the corresponding
second derivative of the deflection w(x, y) according to (45), and (9); written for the
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particular case of a linei load, harmonically distributed along X, the formula for
transverse bending moments becomes

) MP n ,‘22,911",;1:2 n [1 K(y)m + t(y)m] sin m_lnx_ ,

where K(y),, is given by (46), and u(y),, by (65).
For a loading harmonic along X and uniform along Y we have, similarly

202
pmb . mnx
(69) Mp = Yzt = B0 + 1 K°()n] sin ==

where K°(y),, and u°(y),, are given by the expressions (58) and (67), respectively.
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7. TWISTING MOMENTS

The twisting moments which are produced in the main beams and in the cross
beams respectively, are for the case of a harmonic line load given by the second
mixed partial derivative of the deflection w(x, y), as given by Eq. (12).

Considering the difference of the two twisting moments we obtain

3w
(70) Myp — Mpr = (v + 7p) s
ox dy
which is tantamount to
ml mnx
(71) (Mrp — Mpp) = Y1 — 1) LPn [2(»)n] cos mex
2nm 1
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The sign of the last member on the right side differs, depending on the interrelation
of y and . For ¢ > ¢ the sign is positive, while for y < ¢ the sign becomes negative.
The dimensionless parameter © = «(y), is a function of ¢, ¥, 9, «, and #, and it is
represented by the graphs in the figs. 47 to 66, as depending on 9. The graphs are ’
plotted fora = 0, 2 = 1, # = 0, and n = 0-25.

The twisting moments in the equivalent slab are, for the main and for the lateral
directions respectively, given by the formulae

(73) M P = L (M P — MPT)
Yr + ¥p

MPT = te (MTP - MPT) .
Yr + Yp

1) For = 0 this parameter is the (4/«)-multiple of the parameter due originally to Bare§
[8, 164], that is we have
[EO)mln=0 = (4/a) TGIBAR
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In the case of a true orthotropic slab we should, naturally, obtain Mpr = — Mpy,
since it is here y; = yp. 7 :
For the case of a load harmonical in the X-direction, while uniform in the Y-di-
rection we find, similarly
2pd Ib

(9 e = Mo = 330 D = ) [P0l s

where the dimensionless parameter 7° is given by the relation

(1) Ohm=1 J(‘ * ) [<A3:Mm — BON,) - (1 - ‘*)<A:'N,., +

2 1+e¢

+ BY'M,,) + (4%0,,, — BYP,,) + \/(i J_r "’) (AYP,, + B,?,'o,,,,)] .
€ .
For m = 1 the numerical values of 7° are given by the graphs shown in the figures
67—68, where they are plotted for &« = 0, « = 1, and for = 0-25, as dependent
on the parameter 9, which represents here the independent variable.
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8. SHEAR FORCES AND SUPPORT REACTIONS FOR MAIN BEAMS

The shearing forces Q7 (for the X-direction) and the corresponding support re-
actions, Qr are given by the third partial derivative of the function w(x, y) as given
above, by the expressions (11) and (12). For the case of a harmonic line load, we
obtain — on introducing the dimensionless parameters K and p according to (46)
and (65) — after some transformations the following relations

(76) 0y = y2nl {K(y)m + ( P4 u) u(y)m} cos’%x

2bm \/ (QTQP)
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and

(77) O = 22% {KO)n + (28 — 1) )} 008 2%

When the load is harmonically distributed along X, while it is uniform along Y
(that is uniform in the lateral direction), we find in a2 manner similar as above

(78 - ’Lm{l + K0 = (s + 1) 0o} c0s 2

and

(79) 03 = T2 {1+ K0) — (2 = 1) w0} c0s %

Here the dimensionless parameters K° and u° are given by the above expressions (58)
and (67), respectively.

9. TRANSVERSE SHEAR FORCES
For the cross beams, bending in the lateral direction Y, the shearing forces as
defined by the third derivative of the deflection w(x, y), are given by equation (11).

For the case of a harmonic line load we perform the indicated operations to obtain
after some simplifications — the following expression

W eenfonlfegg)edem

Here the factor 7(y),, is defined as in (72), while the newly introduced dimensionless
parameter x(y),, is given by the formula

) #(), = — i[(2s 1) (A M + BIN,) — (26 + 1) \/(
— B' ,p,,,) - (23 — 1) (C'O + 5' q,,,,)

- (2 + 1) (i - :) (CoPom — DaOpn) %

(J(l )PI¢ |m zow-ﬂm)]- 1)

1) For # =0 the parameter is identical with the original parameter introduced by Bare$
[8, 164]; thus

) (AN g —

[”(y)m]ﬂ=0 = %(y),!,’,AR .
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‘ The last term on the right side of (81) is positive if ¢ <, while for ¥ < ¢ it is
negative. Graphical representation of the parameter x = #(y), is shown in the figures
69 to 87, where the values of x are plotted against the independent variable 9; the
graphs have been drawn for & = 0, & = 1, and for n = 0, or = 0-25, and for
various values of ¢ and .
For the particular case of a load of harmonic distribution along X, and uniform
in the Y-direction (lateral), we obtain, similarly

0 0
Pmb T 0 0 . mux
@  or=yEdlns S |00 - e,
T “mg V(erer) ( l
where 7%(y),, is defined by (75), while the dimensionless parameter x%(y),, has the
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following value -
® 0= [(5) [ 0 -2 G - B2 -

C —(+2) (1 * ) (AVN s + BM ) —

—(1.— 29 470, — BP,,) + (1 + 2¢) ( ) (4yP,, + B“’o,,,,,,)]

For & = 0 and for a = 1, (while = 0-25) the values of x° = x°(y), are plotted vers
the independent variable 9, for various values of ¢ in the graphs in the figures 88 — 89.
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Along the edges y = b the latter equations (80) and (82) do, naturally, not furnish
the proper values of the transverse shear forces. This follows from Kirchhoff’s simplifi-
cation, that is from the use of corrected values of the shear forces at the edges,
instead of the proper twisting moments, as explained above (Chapter 2.4). The proper
expressions for the shear forces at the edges y = + b are to be obtained by means of
equation (12), on substituting the pertinent derivatives of w(x, y) according to Eq.
(45) for harmonic line load, while for the case of a load harmonically distributed
along X, and uniform along Y (i.e. across the width), we have to employ Eq. (57a).
In the indicated manner we obtain

(34) 0 = Ep {106 = 1) 0+ wO)afsin ™

and similarly
(85) 02 = 32 — 1) ©() — 0o} sin .

Since the whole solution has been developped so as to meet the boundary condition
along a free edge where the shear force must — of necessity — be equal to zero for
any arbitrary sort of load, the latter two equations (84) and (85) serve mainly as
a convenient check upon the calculation. Thereforeat y = + bandfor— b < e < b
the member in brackets on the right hand side of Eq. (84) or (85) (respectlvely) is
equal to zero, while for e = b it is equal to one..
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ANALYSIS OF FORM-ORTHOTROPIC PLANE SYSTEMS BY THE METHOD
OF DIMENSIONLESS PARAMETERS

PART 2

The analysis of form-orthotropic plane structures of the simple bridge type by means of the
method of dimensionless parameters which, in turn, is based on the analogy with material ortho-

- tropy pertinent to slabs, enables us to obtain in a convenient manner all the internal force-com-

ponents, that is the bending and the twisting moments, as well as the shear forces and support
reactions. One of the dimensionless parameters required in the procedure has been defined pre-
viously (see Part 1), in connection with the definition of the deflection. The remaining three
dimensionless parameters have been evaluated for the main (limiting) types of structures, and
their values have been represented graphically, for the limit values of the torsional parameter «
and of the parameter of contraction capability #, considering each time 45 combinations ¢ and v,
as depending upon the variation of the parameter of lateral stiffness $ within the range 0 and 5-0.

The described method works with well defined dimensionless parameters of known numerical
values (as given in the graphs); it will be found not only very expedient, but it will also furnish
the means for numerical analysis of arbitrary, given degree of accuracy, for any structure of the
given type for any given case of loading.
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